
Automatic	Generation	of	Frequency	Maps	for
Public	Transit	Networks

Bhashitha Gamage
Department	of	Computer	Science

Albert-Ludwigs-University	Freiburg
30th of	May,	2018		

Supervisors
Prof.	Dr.	Hannah	Bast
Prof.	Dr.	Georg	Lausen
Patrick	Brosi



Motivation

2
Section of the manually drawn Official	Swiss	Railway

frequency map [1]



Goal

• Automatic	generation	of	frequency	maps	that	
can	be	used	as		blueprints	for	the	manual	
drawing	of	frequency	maps.

3



Outline

• Frequency	Maps
• GTFS	data	
• Drawing	of	Frequency	Maps

1. Extraction	of	the	transit	graph	from	GTFS	data
2. Implementation	of	the	Frequency	Finding	Algorithm
3. Extraction	of	the	frequency	coverages	from	interesting	nodes
4. Drawing	of	the	frequency	graph	in	convenient	manner

• Evaluation
• Summary	of	the	contribution
• Future	Work

4



Frequency	Maps

• Frequency	Maps		give	information	about	the	frequency	coverage	of	transport	medium	in	a	
public	transit	network

• Ex:	Every	hour	15th minute	a	train	is	leaving	from	Zug	and	it	arrives	to	Zürich	at	25th minute
Every	hour	24th minute	a	train	is	leaving	from	Zürich	it	arrives	to	Zug	at	34th minute

5

Sample	frequency	graph



GTFS	Data

A	General	Transit	Feed	Specification	is	a	collection	of	series	of	comma	separated	
text	files.

6Google	GTFS	reference	page	[2]



1.	Extraction	of	the	transit	graph	from	the	GTFS	Data

7

stop_times.txt [3] Node	class

Edge	class



1.	Extraction	of	the	transit	graph	from	the	GTFS	Data	cont.

• Transit	graph

8
Transit	graph	with	out-connections	and	in-connections



2.	Implementation	of	the	Frequency	Finding	Algorithm	

9Two	nodes	with	set	of	departure	times



2.	Implementation	of	the	Frequency	Finding	Algorithm	cont.

• Main	Goal:
Finding	of	the	arithmetic	progressions	given	a	set	of	departure	times

• Arithmetic	progressions	can	be	represented	as	frequency	labels

• The	algorithm	is	adapted	from	the	”Frequency-Based	Search	for	Public	Transit”	
research	paper	by	Prof	Dr Hannah	Bast and	Sabine	Storandt

10



2.	Implementation	of	the	Frequency	Finding	Algorithm	cont.

• Frequency	finding	algorithm

• Starts	with	the	smallest	departure	t1	and	search	for	the	longest	arithmetic	
progression	(AP)	starting	with	t1

• Add	the	AP	to	a	collection	and	mark	all	elements	covered	by	the	AP

• Then	repeat	the	approach	with	the	next	unmarked	element	t2	as	start	time

• Running	time	of	the	algorithm	is	O(N3) 
 

11



2.	Implementation	of	the	Frequency	Finding	Algorithm	cont.

• Improved	version	of	the	frequency	finding	algorithm
• Introduce	minimum	AP	length	(K)		which	reduce	iteratively

• Modifications
• Human	friendly	frequency	finding
• Introduction	of	boundary	filtering

12



3.	Extraction	of	the	frequency	coverage	between	interesting	
nodes

• Finding	the	frequency	coverage	between	the	two	consecutive	nodes	is	trivial

13

The	diagram	with	two	consecutive	nodes	named	A	and	B	and	out	connections	from	Node	A	to	Node	B



3.	Extraction	of	the	frequency	coverage	between	interesting	
nodes	cont.

• How	to	find	the	frequency	coverage	of	two	distantly	located	nodes	A	and	G?

14
The	diagram	with	multiple	nodes	and	out	connections



3.	Extraction	of	the	frequency	coverage	between	interesting	
nodes	cont.

• Approach	one:
• Navigate	through	all	the	out	connections	of	node	A	and	go	to	the	next	nodes
• Then	navigate	through	all	the	out	connections	of	that	node	again
• …
• Until	reach	the	node	G

• Running	time	depends	on	the	#	of	out	connections	and	#	of	intermediate	nodes

15



3.	Extraction	of	the	frequency	coverage	between	interesting	
nodes	cont.

• Approach	two:
• Retrieves	the	tripIDs of	the	trips	which	covers	each	of	these	node

• Get	the	intersection	of	the	tripIDs

• Checks	for	the	direction	of	the	trip	and	collects	the	tripIDs into	a	collection

• Retrieves	the	departure	times	of	each	trip	from	Node	A,	the	travel	duration	
and	store	them	in	collections

• Sort	the	staring	times	collection	in	ascending	order,	and	feed	to	frequency	
finding	algorithm

16



4.	Drawing	of	the	frequency	lines	and	nodes	which	resembles	a	
schematic	map

• Experimented	with	four	approaches

• Web	application	using	Leaflet

• QGIS	using	GeoJSON

• Octi Tool

• Graphviz

17



01)	Web	Application	using	Leaflet

• Uses	the	client-server	architecture
• Server	is	implemented	in	Java

• Client	is	a	web	page	embedded	with	Leaflet	map	view

• Communication	takes	place	using	get	requests	and	JSON	objects

• Demo

18



02)	QGIS	Using	GeoJSON

• QGIS:	Quantum	Geographic	Information	System
• GeoJson is	a	JSON	format	which	is	used	to	describe	geographical	features
• Nodes:	Points
• Frequency	Lines:	Line	strings

19Ex	for	GeoJson node	explanation



02)	QGIS	Using	GeoJSON cont.

20
The	Switzerland	railway	map	rendered	by	QGIS	with	web	mercator coordinates



03)	Octi Tool

• Octi is	a	tool	developed	under	the	chair	for	Algorithms	and	Data	Structures

• Can	renders	maps,	using	GeoJSON data

• Snaps	station	nodes	to	nodes	on	an	octi-linear	grid	graph

• Every	node	is	connected	by	45,	135,	225	and	315	degrees	edges	to	its	direct	
neighbors

21



04)	Graphviz

• An	open	source	graph	drawing	tool
• Can	draw	graphs	specifies	in	dot	language	scripts

Dot	Language
• Dot	is	a	graph	description	language
• Dot	graphs	are	files	with	gv or	dot	extension
• Programs	that	can	process	Dot	files
• dot
• neato
• fdp etc.

22



04)	Graphviz	cont.

Neato	layout	engine

• "spring	model"	layouts	and	attempts	to	minimize	a	global	energy	function	-
default	behavior

• Can	position	the	nodes

• Orthogonal	edge	style	is	supported

23



04)	Graphviz	cont.

24

Graph	described	in	Dot	language Graph	rendered	by	neato layout	engine



04)	Graphviz	cont.

25
Initial	frequency	graph	rendered	by	Graphviz	



04)	Graphviz	cont.

26
Edge	overlapping	problem



04)	Graphviz	cont.
• Prevent	overlapping	of	parallel	edges

01)	Using	dummy	nodes

27Frequency	graph	with	dummy	nodes



04)	Graphviz	cont.

02)	Modify	the	weight	increasing	mechanism	of	edges

28Maze	object	create	by	Graphviz



04)	Graphviz	cont.
Edge	drawing	mechanism
1) Collects	all	the	out	edges	of	nodes	in	the	graph	into	a	collection
2)	For	each	out	edge,	create	two	snodes (sn and	dn)	which	correspond	to	starting	cell	
and	destination	cell
3)	Then	finds	the	shortest	path	between	sn and	dn using	the	Dijkstra	algorithm
4)	Shortest	path	is	stored	by	storing	the	reference	to	the	next	snode via	n_dad
attribute	and	storing	sedges	in	sedge	attribute	of	snode

5)	Once	all	the	lines	are	routed	as	shortest	paths,	then	the	graph	drawing	starts	and	
completes	the	drawing	of	the	graph

29



04)	Graphviz	cont.

30

Modification	of	UpdateWt()	function



04)	Graphviz	cont.

31

Modification	for	creating	the	
bidirectional	edges

Rendering	of	two	values	in	edge	label



04)	Graphviz	cont.

32
Frequency	graph	with	bidirectional	edges



04)	Graphviz	cont.

33

Bidirectional	edges	between	Zur̈ich	HB	and	Winterthur



Evaluation

Time	required	for	frequency	finding	algorithm	and	human-friendly	frequency	
finding	algorithm
• Configurations:	Intel(R) Xeon(R)	CPU	E5640	@	2.67GHz,	65	GB

 

34
Time	taken	for	frequency	finding	
algorithm

Time	taken	for	human-friendly	
frequency	finding	algorithm



Evaluation	cont.

Evaluation	of	the	frequency	graph	rendered	on	Swiss	Railway	GTFS	data	and	
Deutsche	Bahn GTFS	data

35
Frequency	graph	rendered	on	Deutsche	Bahn GTFS	data



Evaluation	cont.

Evaluation	on	the	trips	covered	by	the	frequency	coverages	out	of	the	total	trips

36

For	the	selected	nodes,	the	total	number	of	departure	times	covered	by	frequency	coverages	
in	the	Swiss	GTFS	dataset



Evaluation	cont.

37

For	the	selected	nodes,	the	total	numbers	of	departure	times	covered	by	the	frequency	coverages	
in	the	Deutsche	Bahn GTFS	data



Evaluation	cont.

Evaluation	between	the	automatically	generated	frequency	graph	and	the	manually	
created	Switzerland	Timetable-2017	graph

38Switzerland	Timetable-2017	Frequency	Graph	[1]



Evaluation	cont.

Advantages	of	manually	created	frequency	map

• Fewer	edge	crossings

• In-connections	and	out-connections	of	the	nodes	are	routed	in	consistent	manner

• Grouping	of	frequency	lines
• Ex:	15,	20,	minute	frequency	coverages

39



Contribution

• Developed	a	tool	to	extract	the	frequency	graph	as	GeoJSON and	Dot	language	from	
arbitrary	GTFS	data

• Experimented	with	4	different	approaches	to	render	the	frequency	graph	in	a	nice	way

• Reverse-engineered	the	method	used	by	the	ortho layout	of	NEATO	engine	and	extended	
it	to	better	handle	multigraphs	(with	many	edges	between	two	nodes)

• Implemented	multiline	edge-label	rendering	to	better	support	frequency	maps

• Evaluated	our	entire	pipeline	on	the	complete	rail	network	of	Switzerland	and	the	long	
distance	network	of	Germany

40



Future	work

• Makes	the	frequency	finding	algorithm	tolerance	for	deviations	in	departures.
• Ex	Karlsruhe	HBF	the	departure	times	from	Freiburg	HBF	as	follows

• 8:57,	9:56,	10:57,	11:56,	12:57,	13:57	..

• Connects	in	connections	of	a	node	to	its	out	connection

41In	and	out	connections	are	connected



Thank	You	for	your	attention!

42



Citations

1. Switzerland	Timetable-2017	(Frequency	Map).
http://www.bahnonline.ch/bo/18755/netzgrafik-fahrplan-schweiz-2017.htm.

2. General	Transit	Feed	Specification
https://developers.google.com/transit/gtfs/reference

3. geOps,	“Public	Transporation Feed	for	Switzerland.”
http://gtfs.geops.ch.

43



Q&A	Backup	slides

• Data	Model

44

trips.txt Trip	Class

Service	Classcalendar_dates.txt



Q&A	Backup	slides

Extraction	of	frequency	coverage	between	interesting	nodes	cnt.

45
Algorithm	to	find	the	tripIDs which	covers	Node	A	and	B



Q&A	Backup	slides

Octi Tool

46
Swiss	frequency	graph	rendered	by	Octi


